Virtual Cement and Concrete Testing Laboratory (VCCTL) Consortium: Questions and Answers

Dale P. Bentz
Building and Fire Research Laboratory
June 13, 2000

Who will the participants be?

• NIST

- Building and Fire Research Laboratory
- Materials Science and Engineering Laboratory
- Information Technology Laboratory
- Industry
 - CEMEX
 - Holnam
 - Lafarge

- Dyckerhoff Zement
- Master Builders
- W.R. Grace & Co.
- Others (ACI, other companies)

What is the consortium developing?

- A virtual cement and concrete testing laboratory
 - Internet-based and menu driven
 - predicts properties based on detailed microstructure simulations of wellcharacterized starting materials
 - ultimately tailored to each company's research interests

Properties Predicted by the VCCTL

- yield stress and viscosity of the fresh material
- setting time
- volumes of hydration reactants and products as a function of hydration time
- chemical shrinkage
- adiabatic heat signature
- percolation properties
- ITZ microstructure
- diffusivities, thermal, and electrical conductivity
- elastic properties
- compressive strength development
- susceptibility to common degradation mechanisms

When and Where?

When

 starting in FY 2001 (Jan. 2001 for company participation) and going for at least 3 years (and possibly much longer)

Where

 NIST and the participating companies' research centers (national and international)

How will the consortium operate?

- Multiple mechanisms for technology transfer
 - joint research
 - guest researchers at NIST
 - NIST researchers at industrial sites for installation/training/joint research
 - VCCTL web site at NIST and company sites

Why should a virtual laboratory for concrete testing be developed?

- Physical testing of concrete is expensive
 - raw materials
 - storage space (materials and curing)
 - manpower for preparation and testing
 - disposal costs
 - time: need to cure for at least 28 days in general before testing

Why should a virtual laboratory for concrete testing be developed?

- Research and development currently hindered by:
 - inadequate characterization of starting materials
 - large number of variables
 - long delay between specimen preparation and testing
 - environmental and operator variability
 - cost of research

Why should a virtual laboratory for concrete testing be developed?

- Environmental issues
 - reduced CO₂ emissions
 - "wasting" cement in low w/c ratio concretes
 - introduction of new materials
 - construction industry slow to accept new systems

Current testing of concrete

- Obtain raw materials in sufficient quantities for concrete mixtures (hundreds of kg)
- characterize raw materials
- design concrete mixtures
- prepare concrete mixtures
- cure concrete mixtures (>= 28 days)
- test concrete mixtures
- dispose of tested materials
- revise mixtures proportions and repeat

Virtual Testing of Concrete

- Obtain raw materials in sufficient quantity for characterization and making cement paste samples (hundreds of grams)
- characterize raw materials
- design mixtures
- simulate microstructure development and/or prepare cement paste specimens
- evaluate properties
- revise mixtures and repeat

Current vs. Virtual Testing

- Current testing
 - physical based
 - manpower intensive
 - materials intensive
 - weeks/months
 - high disposal costs

- Virtual testing
 - computer based
 - computation intensive
 - small material needs
 - days
 - low disposal costs

Other industries (pharmaceuticals, etc.) have successfully gone this route. Is now the time for the cement & concrete industry to be proactive and follow suit??

Typical Costs for Concrete Testing (\$300/batch)

Batches/yr	Yearly Cost
1000	\$300 K
2000	\$600 K
5000	\$1.5 Million

Startup Costs for Virtual Lab

- PC system with VCCTL installed
 - Pentium III 600 MHz, 512 Mbyte RAM
 - \$2500
- Participation in NIST/industry VCCTL
 - \$40 K/yr
- Industry researcher to work with the VCCTL consortium

Why should NIST coordinate this activity?

- "Best in the World" (#1) in the computational materials science of concrete
- strong synergism between experimental and modeling research programs
- past experience in developing successful Web-based applications
- one of our mandates is to assist industry
 - (dozens of NIST/industry consortia exist)
- active in standards and international organizations (ASTM, ACI, RILEM, ISO)

Why should NIST coordinate this activity?

- Objectivity (neutral party as coordinator)
- State-of-the-art equipment for experiments and computations (see handout)
- Human resources (Experts in):
 - cement hydration and microstructure
 - rheology
 - transport and mechanical properties
 - computer modeling
 - particle and microstructure characterization
 - visualization
 - WWW development

Benefits for Consortium Participation

- VCCTL onsite installation and training (onsite or at NIST)
- source code for the VCCTL
- access to extensive NIST facilities and personnel for joint research
- consultation on adapting VCCTL to company's interest & needs
- participation in a focused project with a clear-cut objective that is directed by the interests and needs of the industry

Leveraging of Funds (Best Case)

6 industrial participants; full NIST participation Total funding: \$540 K; leveraging 13.5:1

Leveraging of Funds (Worst Case)

Possible Initial Consortium Topics

- Sulfate additions
- Influence of alkalis
- Strength and rheological property predictions for blended cement concretes
- Slag/kaolin additions to CEMHYD3D
- Influence of chemical admixtures
- Controlled PSD to optimize rheological and early-age properties of cement-based materials (cements blended with inert fillers)

Where do we go from here?

- Obtain commitments in writing from industry participants
- Prioritize and detail research topics
- Develop and obtain approval for a memorandum of understanding (MOU) outlining consortium objectives, resources, and financial and intellectual exchange

More Questions

????????????????

